Вверх

Линия заданий 19, ЕГЭ по математике профильной

10115. Пираты нашли сундук с сокровищами, в котором было 60 монет достоинством 1 дукат и 60 монет достоинством 5 дукатов.
а) Получится ли поделить все деньги поровну между 18 пиратами (каждому должно достаться целое число монет, сдачи и размена ни у кого из пиратов нет)?
б) Получится ли поделить все деньги поровну между 40 пиратами (каждому должно достаться целое число монет, сдачи и размена ни у кого из пиратов нет)?
в) При каком наибольшем количестве пиратов капитану всегда удастся поделить монеты между ними, каким бы способом ему ни захотелось это сделать (возможно, кому-то из пиратов будет полагаться 0 монет)?

а) да
б) нет
в) 16

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке ;)
При обращении указывайте id этого вопроса - 10115.

10134. Пираты нашли сундук с сокровищами, в котором было 50 монет достоинством 1 дукат и 50 монет достоинством 3 дуката.
а) Получится ли поделить все деньги поровну между 20 пиратами (каждому должно достаться целое число монет, сдачи и размена ни у кого из пиратов нет)?
б) Получится ли поделить все деньги поровну между 40 пиратами (каждому должно достаться целое число монет, сдачи и размена ни у кого из пиратов нет)?
в) При каком наибольшем количестве пиратов капитану всегда удастся поделить монеты между ними, каким бы способом ему ни захотелось это сделать (возможно, кому-то из пиратов будет полагаться 0 монет)?

а) да
б) нет
в) 26

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке ;)
При обращении указывайте id этого вопроса - 10134.

10153. Пираты нашли сундук с сокровищами, в котором было 40 монет достоинством 1 дукат и 40 монет достоинством 5 дукатов.
а) Получится ли поделить все деньги поровну между 16 пиратами (каждому должно достаться целое число монет, сдачи и размена ни у кого из пиратов нет)?
б) Получится ли поделить все деньги поровну между 30 пиратами (каждому должно достаться целое число монет, сдачи и размена ни у кого из пиратов нет)?
в) При каком наибольшем количестве пиратов капитану всегда удастся поделить монеты между ними, каким бы способом ему ни захотелось это сделать (возможно, кому-то из пиратов будет полагаться 0 монет)?

а) да
б) нет
в) 11

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке ;)
При обращении указывайте id этого вопроса - 10153.

10172. Ответьте на следующие вопросы:
а) Существует ли такое кратное 11 трёхзначное число, у которого вторая цифра в 14 раз меньше произведения двух других его цифр?
б) Существует ли такое кратное 11 трёхзначное число, у которого сумма всех цифр равна 1?
в) Найдите наибольшее кратное 11 восьмизначное число, среди цифр которого по одному разу встречаются цифры 1, 2, 3, 4, 5, 6, 7 и 9. Ответ обоснуйте.

а) да, например 847
б) нет
в) 97 635 241

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке ;)
При обращении указывайте id этого вопроса - 10172.

10191. а) Существует ли такое кратное 11 трёхзначное число, у которого вторая цифра равна произведению двух других его цифр?
б) Существует ли такое. кратное 11 трёхзначное число, у которого сумма всех цифр равна 5?
в) Найдите наименьшее кратное 11 восьмизначное число, среди цифр которого по одному разу встречаются цифры 1, 2, 3, 4, 5, 7, 8 и 9. Ответ обоснуйте.

а) да, например 242
б) нет
в) 12 738 495

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке ;)
При обращении указывайте id этого вопроса - 10191.

10210. Дана бесконечная арифметическая прогрессия, первый член которой равен 2014, а разность равна 13. Каждый член прогрессии заменили суммой его цифр. С полученной последовательностью поступили так же и действовали так до тех пор, пока не получилась последовательность однозначных чисел.
а) Найдите тысячное число получившейся последовательности.
б) Найдите сумму первой тысячи чисел получившейся последовательности.
в) Чему может равняться наибольшая сумма 1010 чисел получившейся последовательности, идущих подряд?

а) 7
б) 5002
в) 5054

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке ;)
При обращении указывайте id этого вопроса - 10210.

10229. В роте два взвода, в первом взводе солдат меньше, чем во втором, но больше, чем 50, а вместе солдат меньше, чем 120. Командир знает, что роту можно построить по несколько человек в ряд так, что в каждом ряду будет одинаковое число солдат, большее 7, и при этом ни в каком ряду не будет солдат из двух разных взводов.
а) Сколько солдат в первом взводе и сколько во втором? Приведите хотя бы один пример.
б) Можно ли построить роту указанным способом по 11 солдат в одном ряду?
в) Сколько в роте может быть солдат?

а) например, 54 и 63
б) нет
в) 117 и 119

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке ;)
При обращении указывайте id этого вопроса - 10229.

10248. На доске написали несколько не обязательно различных двузначных натуральных чисел без нулей в десятичной записи. Сумма этих чисел оказалась равной 363. Затем в каждом числе поменяли местами первую и вторую цифры (например, число 17 заменили на число 71).
а) Приведите пример исходных чисел, для которых сумма получившихся чисел ровно в 4 раза больше, чем сумма исходных чисел.
б) Могла ли сумма получившихся чисел быть ровно в 2 раза больше, чем сумма исходных чисел?
в) Найдите наибольшее возможное значение суммы получившихся чисел.

а) например, 15 раз число 19 и число 78
б) нет
в) 1650

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке ;)
При обращении указывайте id этого вопроса - 10248.

10267. На доске было написано 20 натуральных чисел (необязательно различных), каждое из которых не превосходит 40. Вместо некоторых из чисел (возможно, одного) на доске написали числа, меньшие первоначальных на единицу. Числа, которые после этого оказались равными 0, с доски стёрли.
а) Могло ли оказаться так, что среднее арифметическое чисел на доске увеличилось?
б) Среднее арифметическое первоначально написанных чисел равнялось 27. Могло ли среднее арифметическое оставшихся на доске чисел оказаться равным 34?
в) Среднее арифметическое первоначально написанных чисел равнялось 27. Найдите наибольшее возможное значение среднего арифметического чисел, которые остались на доске.

а) да
б) нет
в) \( 38\frac{1}{7} \)

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке ;)
При обращении указывайте id этого вопроса - 10267.

10286. Три различных натуральных числа являются длинами сторон некоторого тупоугольного треугольника.
а) Может ли отношение большего из этих чисел к меньшему из них быть равно 2?
б) Может ли отношение большего из этих чисел к меньшему из них быть равно \( \frac{4}{3} \)?
в) Какое наименьшее значение может принимать отношение большего из этих чисел к меньшему из них, если известно, что среднее по величине число равно 20?

а) да, например числа 4, 5 и 8
б) нет
в) \( \frac{{28}}{{19}} \)

P.S. Нашли ошибку в задании? Пожалуйста, сообщите о вашей находке ;)
При обращении указывайте id этого вопроса - 10286.

Для вас приятно генерировать тесты, создавайте их почаще